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ARTICLE INFO ABSTRACT

Valvular heart disease is an increasing population health problem and, especially in the elderly, a significant
cause of morbidity and mortality. The current treatment options, such as mechanical and bioprosthetic heart
valve replacements, have significant restrictions and limitations. Considering the increased life expectancy of our
aging population, there is an urgent need for novel heart valve concepts that remain functional throughout life to
prevent the need for reoperation.

Heart valve tissue engineering aims to overcome these constraints by creating regenerative, self-repairing
valve substitutes with life-long durability. In this review, we give an overview of advances in the development of
tissue engineered heart valves, and describe the steps required to design and validate a novel valve prosthesis
before reaching first-in-men clinical trials. In-silico and in-vitro models are proposed as tools for the assessment
of valve design, functionality and compatibility, while in-vivo preclinical models are required to confirm the
remodeling and growth potential of the tissue engineered heart valves. An overview of the tissue engineered
heart valve studies that have reached clinical translation is also presented. Final remarks highlight the possi-
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bilities as well as the obstacles to overcome in translating heart valve prostheses into clinical application.

1. Introduction

The leading cause of death worldwide today is cardiovascular dis-
ease (CVD). Coronary heart disease, stroke and heart failure are the
main contributors to CVD morbidity and mortality in industrialized
nations. The prevalence of heart disease in adults rises steeply with
progressing age with nearly 70% of people over the age of 60 affected
by at least one form of CVD and > 80% of people 80 years or older
(Benjamin et al., 2017; Townsend et al., 2016). Heart disease due to
rheumatic fever still plays an important role in developing countries
and continues to have a relatively high prevalence in elderly patients
(Marijon et al., 2012; Iung & Vahanian, 2011).

While not the most prevalent form of cardiovascular disease, valv-
ular heart disease (VHD) represents a fast-growing public health pro-
blem (Supino et al., 2006). The risk of developing valve dysfunction —
characterized by stenosis and/or regurgitation due to degenerative
changes and calcification — increases drastically with age. In fact, >
13% of people 75years of age or older show moderate to severe
valvular dysfunction, compared to 0.7% in younger patients (<45 year
olds) (Nkomo et al., 2006; Iung et al., 2003; d'Arcy et al., 2011). Given
the worldwide increasing life expectancy, the significance of VHD as a

socioeconomic burden is set to rise notably over the coming years
(Supino et al., 2006) underlining the importance of gaining deeper
insights into these conditions and their treatment.

1.1. VHD treatment challenges

Medical treatment for VHD is currently symptomatic at best and the
lack of understanding regarding the pathophysiology and progression
of VHD have prevented advances in medical therapy (Maganti et al.,
2010). Valve repair has extensively evolved in the past years and is
considered a promising option for young patients with aortic regur-
gitation (Komiya, 2015). Valve replacement remains the therapy of
choice for severe valvular dysfunction and globally over 300,000 in-
terventions are performed each year (Kheradvar et al., 2015) using
mechanical or bioprosthetic valves. Due to comorbidities, many elderly
patients are, however, not suitable candidates for highly invasive open-
heart surgery. In addition, the non-physiological hemodynamics of
mechanical heart valves make lifelong anticoagulation therapy a ne-
cessity, putting the patients at increased risk of bleeding and throm-
boembolic events (Kvidal et al., 2000). Advances in transcatheter valve
replacement (TVR) have opened up therapeutic possibilities for high-
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risk patients or patients ineligible for open-heart surgery. The sig-
nificantly less-invasive TVR approach has, in the meantime, been ex-
tended to intermediate risk patients with outcomes non-inferior — and
in some cases superior — to surgical intervention (Thourani et al., 2016;
Piazza et al., 2013; Tarantini et al., 2017; Barker & Reardon, 2017).
However, long-term follow-up studies are still required.

One of the reasons why there is hesitation to employ the TVR
technique in younger patients (< 65 years) is the fact that currently the
only clinically relevant valve prosthesis compatible with TVR is a bio-
prosthesis based on xenogenic glutaraldehyde-fixed materials (porcine-
or bovine-derived). These valves are being applied in elderly and high-
risk patients. They are, however, prone to immune-driven calcification
and degradation leading to structural failure after 10 to 20 years. This
degenerative process is even more pronounced in younger patients,
causing the potential need for multiple re-interventions (Weber et al.,
2012; Emmert & Hoerstrup, 2017). A crimpable, durable prosthetic
valve with reduced immunogenicity would therefore be of central im-
portance in successfully translating the TVR approach also to younger
patients. Treating valve dysfunction in children and teenagers is even
more complex due to continued somatic growth, exposing these pa-
tients to a series of reoperations to adapt for changes in heart size. Thus,
a prosthetic valve which, in addition to the above properties, has the
ability to remodel and grow would be required to enable the very young
to fully benefit from TVR.

In summary, there is an evident and pressing need for novel valve
prostheses whose characteristics resemble more closely those of native
heart valves. The ideal prosthesis exhibits excellent hemodynamics and
hemocompatibility, has the capacity for remodeling and growth, pos-
sesses little or no immunogenicity and is thereby resistant to degrada-
tion and calcification. The ideal valve would also be suitable for all
patient cohorts allowing for the minimally-invasive TVR procedure to
substitute open-heart surgery for valve replacement.

Cardiovascular tissue engineering (TE) aims to overcome the lim-
itations of current valve prostheses by creating living heart valves with
excellent hemodynamics that have the ability to remodel and grow once
implanted.

2. Heart valve tissue engineering
2.1. In-vitro TEHV

The classic TEHV consists of a biodegradable porous scaffold — ei-
ther of biologic or synthetic origin — onto which previously harvested
and in-vitro expanded autologous cells are seeded. The scaffold-cell
construct is then usually cultured in a bioreactor to enable extracellular
matrix (ECM) deposition prior to implantation (Langer & Vacanti,
1993). The scaffold material itself plays a crucial role for the geometry
of the valve prosthesis as well as for cell proliferation and organization,
and for the final mechanical properties of the construct. Several ma-
terials have been investigated to this end and have been extensively
reviewed elsewhere (Jana et al., 2014; Bouten et al., 2011). Briefly,
natural and synthetic biodegradable polymers provide an attractive
scaffold solution due to their unlimited availability, their tunable me-
chanical properties and geometries, and their inherent lack of xeno-
genic disease transmission. Cell adhesion, tissue organization, resorp-
tion and inflammatory response to degradation products are, however,
parameters that are more difficult to control in this setting. Both syn-
thetic and natural polymer-based scaffolds, or combinations thereof,
have yielded functional TEHVs when seeded with autologous cells and
cultured in vitro (Schmidt et al., 2007; Weber et al., 2011; Hoerstrup
et al., 2002; Shinoka et al., 1998; Gottlieb et al., 2010).

Decellularized heart valves of either homogenic or xenogenic origin
are an alternative biological scaffold solution. They serve as geome-
trically and hemodynamically optimal biological substrates that may
positively influence cell differentiation and remodeling when seeded
with autologous cells (T Kasimir et al., 2003; VeDepo et al., 2017).
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However, the negative effect of cryopreservation on the harvested
valves, the effects of decellularization on the scaffold (microstructural
changes, altered protein composition), the limited supply of human
tissue, the residual immunogenicity of animal tissue and the limited
cellular infiltration impose non-negligible restrictions on this TE ap-
proach (VeDepo et al., 2017).

In addition to the scaffold material, the success or failure of an in-
vitro TEHV depends on the cell source used for the approach. The latter
plays a fundamental role in the early functionality of a TEHV by being
responsible for ECM production and organization. To prevent an im-
munogenic response, autologous and accessible cells sources are re-
quired for (pre)clinical application. However, autologous primary cells
harvested from patients affected by VHD may be unsuitable for the
approach, because of limited proliferation and ECM production po-
tential (Jana et al., 2016). Various other cell sources (e.g.: mesench-
ymal stem cells, endothelial progenitor cells, and fibroblasts) have been
investigated and used for seeding heart valve scaffolds, as reviewed
elsewhere (Jana et al., 2016).

The requirement for (autologous) cell isolation, cell expansion and
scaffold seeding and culturing obviously adds to the complexity of the
conventional TE approach and makes it a time- and labor-intense pro-
cedure leading to the question whether the seeding and culturing step is
really a necessity. The rapid evolution of TE has led research to focus on
an alternative pathway aiming to reduce cost and circumvent the lo-
gistical hurdles of the classic in-vitro approach (Emmert et al., 2017). In
the so-called in-situ TE approach a cell-free construct is directly im-
planted and the ensuing cell infiltration and host response are modu-
lated to yield a functional, regenerative valve.

2.2. In-situ TEHVs — guided tissue regeneration

In 1969 Sparks investigated the idea of using the body as a bior-
eactor by exploiting the foreign body reaction to create vascular grafts
(Sparks, 1969). Evolving from this notion, the in-situ TE strategy aims
at exploiting the body's natural regenerative capacity by directly im-
planting acellular biodegradable scaffolds amenable to host cell re-
cruitment, migration and remodeling. Thereby, the need for harvesting
autologous cells as well as the scaffold seeding and in-vitro culturing
steps are eliminated. The objective is to obtain a native-like living valve
in-situ by guiding and modulating the host's response to the implanted
scaffold (Bouten et al., 2011).

Obviously, the scaffold material again plays a crucial role in this
context. It must provide an optimal environment for cell adhesion and
growth and sustain the required mechanical properties during neotissue
formation (Bouten et al., 2011; Wissing et al., 2017). Currently, both
biological and polymer solutions, as well as hybrid systems, are being
investigated and preclinical (Table 1) and first clinical data (Table 2)
are emerging underlining the current interest in this technique (Motta
et al., 2018).

2.2.1. Homo- and xenograft-based heart valves

The decellularization of xenogenic or allogenic valves aims to pro-
vide a scaffold consisting of extracellular matrix (ECM) with decreased
immunogenicity while maintaining its structural and cell-mediating
properties. Initially, preclinical studies using decellularized valves
showed promising results (Zafar et al., 2015; Iop et al.,, 2014) but
clinical trials using xenografts have led to dramatic outcomes due to
residual immunogenicity of the graft and graft failure due to degrada-
tion (Simon et al., 2003; Riiffer et al., 2010; Voges et al., 2013).

Clinical studies involving decellularized homografts have shown
low immunoreactivity (Hawkins et al., 2003) and good functionality in
both pulmonary and aortic position (Sarikouch et al., 2016a; Brown
etal., 2011; da Costa et al., 2010; Zehr et al., 2005). However, contrary
results regarding cell infiltration (Konertz et al., 2011; Sayk et al., 2005;
Dohmen et al., 2007) and questions regarding long-term durability
(Helder et al., 2016a) call for further investigation. Also, donor shortage
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and the requirement of open-heart surgery for these valve replacements
impose significant restrictions on the applicability of this valve sub-
stitution strategy.

2.2.2. Biodegradable polymeric valves

Natural and synthetic biodegradable polymers are currently gar-
nering a lot of attention and interest as scaffolds for in-situ application
as they can be designed to exhibit the desired mechanical properties
and valve geometry. The unlimited availability of both natural and
synthetic polymers is a further advantage of this approach; however,
natural polymers, mainly hydrogels (e.g.: collagen, gelatin, fibrin), do
not usually offer sufficient mechanical properties to be suitable for in-
vivo application. On the other hand, synthetic biodegradable polymers
(e.g.: polyglycolic acid, polylactic acid, polycaprolacton, ...), can be
tailored to include 1) sufficient strength to sustain in-vivo valve func-
tion while the new tissue is formed; 2) flexibility required to implant
these scaffolds via TVR; 3) controlled degradation rate; 4) rapid man-
ufacturing, and 5) cost reduction. In addition, porosity can be config-
ured to allow for optimal cell infiltration and the material can be
functionalized using peptides, growth factors, and/or cytokines to
modulate the ensuing immune response (Bouten et al., 2011; Wissing
et al., 2017; Cheung et al., 2015; Fioretta et al., 2012). As a promising
preclinical example of this approach, pulmonary valve replacements
based on bisurea-modified poly(carbonate) (Kluin et al., 2017) and 2-
ureido-4[1H]-pyrimidinone-modified poly-caprolactone (Serruys et al.,
2017) implanted in sheep retained their functionality for up to 12 and
24 months, respectively. Despite the successful cell-driven scaffold de-
gradation and remodeling in these approaches, extended long-term
follow up studies are required to better understand the remodeling and
functionality of these polymer-based prostheses upon complete scaffold
degradation.

2.2.3. Tissue engineered matrix-based (TEM) heart valves

To eliminate dependence on donor-derived valves and support valve
replacement by TVR, TEHVs based on tissue engineered matrix (i.e.: in-
vitro grown ECM subsequently decellularized (Dijkman et al., 2012a))
are currently being investigated (VeDepo et al., 2017; Motta et al.,
2018; Fioretta et al., 2016). Myofibroblasts and dermal fibroblasts have
proven to be viable cell sources for the in vitro production of ECM
(Hoerstrup et al., 2002; Hoerstrup et al., 2000; Syedain et al., 2014) and
preclinical studies have so far shown good early functionality and in-
vivo cell infiltration and organization (Syedain et al., 2014; Driessen-
Mol et al., 2014; Schmidt et al., 2016). Furthermore, it has been shown
that TEM scaffolds can be successfully implanted using the TVR ap-
proach (Driessen-Mol et al., 2014; Schmidt et al., 2010; Dijkman et al.,
2012b).

In summary, the success of TEHVs is influenced strongly by scaffold
architecture, hemodynamic performance and cellular infiltration and
organization. Each of these factors alone can bring about the failure of a
valvular prosthesis and must play a crucial role in the design and va-
lidation of a heart valve.

The aim of this review is to provide an overview of the most re-
levant experimental steps to test and validate a novel (tissue en-
gineered) valve prosthesis and to approach clinical translation. Before
being ready for first-in-men trials, a novel heart valve replacement
should be subjected to extensive in-vitro and in-vivo testing to confirm
its functionality, safety, and suitability for clinical use. TEHVs should
undergo similar laboratory testing, but extra characterization is re-
quired to assess remodeling and growth potential of the replacement
and confirm its safety profile over time. Within this review, we will
distinguish between in-silico, in-vitro, and pre-clinical in-vivo tests that
can and should be used to design and validate TEHVs.

3. In-silico valve validation

Valvular diseases are often associated with changes in
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hemodynamics, the physical principle controlling the distribution of
blood flow and pressure (Gould et al., 2013; Secomb, 2016). Main-
tenance of physiological hemodynamics is, therefore, vital for normal
valve functionality and to prevent the development of disease. In fact,
non-physiological values of blood velocity and pressure can lead to
complex changes firstly on a macroscopic scale (i.e.: higher values of
blood pressure can lead to increased leaflet deformation) and then on
microscopic scale (i.e.: increased leaflet deformation influences valv-
ular interstitial and endothelial cells that can become activated, pro-
moting maladaptive tissue remodeling) (Gould et al., 2013). Con-
sidering the importance of these forces on the physiological or
pathological remodeling of the leaflet, understanding stress and strain
distribution in the valve cusps is of utmost importance to predict the
remodeling potential of tissue engineered constructs.

The progress in computational modeling of the past decades pro-
vides valuable information for our understanding of the complex bio-
logical processes that characterize the valve environment (i.e.: opening
and closure behavior of the leaflets, flow patterns, cellular interactions,
stress and strain distribution) (Chandran, 2010). Computational simu-
lations proved to be essential also for the evaluation of novel designs of
valve replacements, hence reducing the need for prototype production
and animal testing (Chandran, 2010), as also recognized by the US Food
and Drug Administration (FDA) in 2014 (Morris et al., 2016).

These results, in combination with the advent of non-invasive 3D
cardiac imaging modalities (i.e.: echocardiography, magnetic resonance
imaging (MRI), computed tomography) led to patient-specific modeling
of the cardiac valves (Sun et al., 2014). Patient-specific 3D re-
construction can be useful to simulate congenital heart disease, where
the structural and physiological complexity of the cardiac valves cannot
be represented by standard in-vitro and in-vivo model systems (Quail &
Taylor, 2013), as well as for preoperative planning of minimally in-
vasive transcatheter procedures, where precise assessment of the valve
dimensions and geometry is of utmost importance for proper valve
functionality (Sun et al., 2014).

Currently, the dynamic simulation of heart valve prostheses is
usually achieved by finite-element (FE) analysis, computational fluid
dynamics (CFD) and fluid-structure interaction (FSI). FE analysis fo-
cuses on the characterization of stress and strain distribution in the
region of interest (i.e.: the leaflets), CFD provides a quantitative de-
scription of flow characteristics, and FSI aims at modeling the inter-
actions between valve structure and blood flow, providing information
on the detailed flow dynamics past the valve (Chandran, 2010; Sun
et al., 2014).

3.1. Finite element structural analysis

FE analysis can be used to optimize valve designs by performing
parametric studies on valve geometry and dimensions. While most early
valve models were based on simplified symmetric geometries of the
valve structures, the recent use of cardiac imaging techniques allows for
the development of patient-specific simulations based on a detailed
three-dimensional geometry of the valve. Initially, this analysis was
performed on valves in closed configuration (Sabbah et al., 1985;
Ghista & Reul, 1977; Cataloglu et al., 1977) but, more recently, the
dynamic simulation of the opening and closure of a heart valve has also
been achieved (Sripathi et al., 2004; Gnyaneshwar et al., 2002). Due to
advances in imaging and simulation technologies, it is now possible to
perform patient-specific modeling of valve replacement using different
prostheses, a procedure that can help the surgeon in selecting the best
heart valve replacement for the specific diseased anatomy of the patient
(Quail & Taylor, 2013).

The application of such a model to TEHVs is still limited but of
remarkable importance. As an example, TEHVs with improved geo-
metry were obtained by using a constraining insert during culture in the
bioreactor. While in-vitro testing showed competent hydrodynamic
functionality under physiological pulmonary conditions, in-silico data
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revealed a considerable decrease in radial tissue compression. This re-
sult suggests that the developed TEHV is expected to be less prone to
leaflet retraction, hence retaining its competence after implantation
(Sanders et al., 2016). Additionally, computational modeling has been
used to predict the remodeling of a TEHV subjected to both pulmonary
and aortic pressure conditions. In this study, the risk of developing
valvular insufficiency was also correlated to the presence of contractile
cells, showing how an increase in cellular contractility can lead to the
development of valvular insufficiency (Loerakker et al., 2016).

3.2. Computational fluid dynamics

By providing a measure of the blood flow, imaging techniques such
as 4D MRI and echocardiography, are a powerful tool to improve our
understanding of the pathophysiology of cardiovascular diseases, by
quantifying and visualizing the mechanical stress on the valve walls and
leaflets (Morris et al., 2016; Itatani et al., 2017). However, these
methods lack spatial and temporal resolution. Compared to them, CFD
is a well-established tool to calculate the flow instead of measuring it
(Itatani et al., 2017). CFD allows to study the complex physiological
flows of the heart, enabling the investigation of pressure and flow
fields. As an example, CFD modeling is commonly used to compute wall
shear stress values in a non-invasive way, providing information on the
local hemodynamics and on the flow characteristics (i.e.: laminar,
disturbed, turbulent) (Jin et al., 2004). By providing detailed predic-
tions of blood flow through the valve prosthesis, CFD data are essential
to optimizing valve hemodynamics and limiting the risk of blood clot-
ting (Kelly, 2002). In fact, by understanding the flow pattern, it is
possible to change and correct the designs of heart valve prostheses in
order to limit the design-related thrombogenic potential (Simon et al.,
2010; Yoganathan et al., 2005; Zakaria et al., 2017).

Combined with advanced imaging techniques, CFD simulations
have also demonstrated their potential in modeling healthy and dis-
eased systems and in predicting the physiological responses to a specific
clinical intervention (Morris et al., 2016). CFD is therefore developing
towards a clinical tool to assess heart functionality, providing important
information on hemodynamic parameters to serve as non-invasive
clinical diagnostic indices (Doost et al., 2016). However, this powerful
computational technique should also be used to assess the flow patterns
generated by (tissue engineered) valve prostheses, allowing for reduc-
tion of costs and risks associated with a novel heart valve design (Kelly,
2002).

3.3. Fluid-structure interaction model

Compared to native healthy heart valves, prosthetic valves are as-
sociated with complications often related to the non-physiologic flow
patterns created by the prostheses (e.g.: regions of abnormal flow de-
termined by the bi-leaflet design of mechanical valves induce local
areas of high shear stress that can activate platelets, a major factor
leading to thrombus deposition). FSI models can be used to reveal the
hemodynamics of valve replacements and the interaction between
blood and the implanted valve (Borazjani, 2015).

By using in-vitro derived hemodynamic parameters (e.g.: trans-
valvular pressure gradient, flow rate, maximum velocity, and effective
orifice area) and platelet activation models, it is possible to characterize
the hemodynamics and thrombogenic potential of a novel valve design.
For example, this approach allows to determine platelet trajectories and
their statistical distribution, indicating areas of stress accumulation,
local reverse flow, and vortices. By identifying non-physiological flow
patterns caused by the valve geometry, it is possible to determine which
features of the valve need further design optimization (Piatti et al.,
2015). In order to obtain reliable results and prevent technical pro-
blems and requirements, the most suitable approach to simulate flexible
leaflets should be determined, especially for complex 3D simulations
(Bavo et al., 2016). Interestingly, such an approach can also be applied
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to patient-specific models derived from magnetic resonance images and
to assess the ventricular flow through the valve (Liang Zhong et al.,
2013). These simulations can be also extremely valuable in studying the
progression of disease such as the aortic valve stenosis (Sadeghpour
et al.,, 2017) and in understanding the effects on both valve structure
and cellular organization (Gould et al., 2013).

The accuracy of computational modeling depends heavily on valve
geometry, material properties, and the loading and boundary condi-
tions used, determining the level of simplification of the simulation.
The use of patient-specific valve models with improved accuracy ob-
tained by state-of-the-art imaging techniques allows the reconstruction
of complex heart and valve anatomies and understanding of the specific
hemodynamics. As a consequence, in-silico models can help in reducing
the risks associated with the testing of a novel design, thereby reducing
the number of required animals for preclinical testing. Nevertheless,
valve functionality and remodeling cannot be validated only with
computational modeling and further in-vitro and in-vivo assessment in
suitable models is a necessity to confirm the safety, biocompatibility,
and regenerative capacity of a TEHV.

4. In-vitro valve validation
4.1. Biocompatibility

Upon implantation, initial blood-material interactions coat the
surface of the implant with a provisional matrix (i.e.: fibrin and plate-
lets) that will further influence the inflammatory response and sub-
sequent phases of healing (Anderson et al., 2008). Previous studies have
shown the infiltration of host cells in tissue engineered acellular valves,
inducing the anticipated remodeling response (Weber et al., 2011;
Kluin et al., 2017; Weber et al., 2013). Researchers are currently using
different in-vitro platforms (i.e.: microfluidic chambers, transwell sys-
tems, organ-on-a-chip technologies (Smits et al., 2014; Ballotta et al.,
2014; Sidorov et al., 2017; Sanders et al., 2017)) to assess the inter-
action between human blood-derived cells and the implanted valve
material in terms of adhesion, infiltration, and secretion potential. This
aspect is of central importance to explain and to anticipate possible
(mal-)adaptive remodeling phenomena determined by the initial
monocyte recruitment (Roh et al., 2010). Additionally, by using human-
derived cells, the assessment of likely patient-specific differences (i.e.:
gender, age, disease ...) in the early human host cell response can be
unraveled and correlated to the remodeling potential.

Early thrombotic and thromboembolic complications post im-
plantation are another important concern of current cardiovascular
implants, making hemocompatibility a fundamental biomaterial re-
quirement (Ekdahl et al., 2011). Foreign materials as well as exposed
collagen fibers are known to initiate coagulation, allowing for platelet
adhesion and activation (Farndale, 2006). Previous studies have proven
that TEHV implanted as pulmonary replacement in sheep support
neoendothelialization (Kluin et al., 2017; Weber et al., 2013; Reimer
et al., 2017). However, in-situ endothelialization in human has been
reported to be rather limited when compared to animal models (Zilla
et al., 2007). Hence, full in-vitro endothelialization of the TE heart
valve prior to implantation represents a potential solution to reduce the
risk of early thrombosis, as already shown in clinical trials using de-
cellularized human pulmonary valves pre-seeded with autologous en-
dothelial cells (Cebotari et al., 2006; Dohmen et al., 2012).

In terms of regulatory aspects, the International Organization of
Standardization (ISO) suggests guidelines to assess the material bio-
compatibility in the ISO 10993 (Biological evaluation of medical de-
vices). Specifically, the norm proposes tests for interactions with blood
(part 4), suggesting in-vitro assays to obtain information on the effects
of the biomaterial on blood and blood components, such as hemolysis
(i.e.: damaging effects on leukocytes and erythrocytes during whole
blood incubation with the material), complement activation, and
thrombogenicity (i.e.: platelet adhesion, clotting time). In addition,
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tests for in vitro cytotoxicity (part 5) are also recommended to assess
potential cytotoxic reactions (i.e.: via cell incubation together with
material extracts).

4.2. Functionality

To determine valve functionality in-vitro, TEHVs are subjected to
hydrodynamic studies aiming at characterizing the valve performance
by measuring parameters such as pressure difference, regurgitation, and
durability. Measures for flow, backflow leakage, and pressure gradients,
together with accurate imaging of the opening and closure behavior of
the valve can be obtained using pulse duplicator systems to assess the
hydrodynamic pulsatile performance of the valve replacements. Valve
durability testers, on the other hand, are fundamental to determine the
fatigue behavior of the valve (Sanders et al., 2016; Buse et al., 2016;
Black et al., 1994) via accelerated durability tests. To further mimic the
physiological environment, certain parameters can be adjusted in order
to better mimic the blood density (e.g.: by adding Polyacrylamid or
Xanthan gum to the saline solution to replicate the complex viscoelastic
behavior of blood (Pohl et al., 1996)). By using this precaution, the
influence of blood-like rheological properties on leakage flow and vo-
lume can be better determined. To simulate long-term in-vivo perfor-
mance, accelerated opening and closing cycle settings (i.e.: at 10 Hz)
are available in the durability tester. However, several precautions are
also needed to ensure the correct opening and closing behavior of the
valve (i.e.: by analyzing slow-motion recording) to prevent incorrect
loading of the leaflets that could affect valve durability (Sanders et al.,
2016).

Specifically for heart valve replacements, the ISO 5840
(Cardiovascular implants: cardiac valve prostheses) provides general
requirements to test valves for human implantation and it defines op-
erational requirements of a valve prosthesis. Additionally, it presents a
selection of tests and methods suitable to assess the physical, chemical,
biological, and mechanical properties of heart valve substitutes and of
their materials and components.

4.3. Feasibility

After having proven the prosthesis functionality in a simplified
heart valve tester, the assessment of valve performance inside a rea-
listically performing heart will provide further information on the op-
erability of the product. To this end, researchers have developed the
cardiac biosimulator platform, a novel in-vitro set-up that simulates
cardiovascular device real operating conditions in a physiological-like
environment (Leopaldi et al., 2015). This approach consists of a mock
apparatus combined with an entire explanted (ovine, porcine, ...) heart,
capable of simulating the pumping function of the heart through ex-
ternal pressurization of the ventricle (Leopaldi et al., 2015). By pre-
serving the valvular anatomy, the cardiac biosimulator platform allows
to test novel valve prototypes, to simulate surgical or transcatheter
procedures, and to train physicians in novel surgical techniques
(Leopaldi et al., 2018). Additionally, this set-up is compatible with
advanced imaging techniques and will enable hemodynamic analysis
and valve imaging in physiological settings (Leopaldi et al., 2012).

Despite the advances in in-vitro model systems, it is not yet possible
to replicate important physiological phenomena in these set-ups that,
by definition, are a simplification of the in-vivo host environment.
While the use of blood-derived mononuclear cells to determine the
immunocompatibility of a material is an established method, the results
will be limited by the exclusion of certain cell fractions (i.e.: granulo-
cytes and, particularly, their sub-population neutrophils) that may also
play a role in the inflammatory process. Similarly, the use of whole
blood in-vitro requires blood exposure to different surfaces and the use
of anti-coagulants that will invariably influence the coagulation cas-
cade. Finally, the ISO norms apply only to non-regenerative mechanical
and bioprosthetic valves, suggesting the need for an imminent update to
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better assess the performance of tissue engineered valve prostheses
that, by definition, will change by in-vivo remodeling upon implanta-
tion. Hence, the durability assessment will most likely lead to a po-
tential underestimation of the durability of the valve for degenerative
phenomena associated with the testing conditions.

5. In-vivo (preclinical) valve evaluation

Despite the recent advances in both in-vitro and in-silico models to
test the functionality and biocompatibility of heart valve replacements,
in-vivo experiments are a mandatory step in the preclinical evaluation
of such a prosthesis. Additionally, valve remodeling, self-repair and,
eventually, growth — fundamental characteristics of a TEHV - can only
be tested and verified in-vivo. While small animal models have been
extensively used to assess integration, remodeling, and functionality of
tissue engineered vascular grafts (Roh et al., 2010; Hibino et al., 2011;
Lee et al., 2014), TEHVs are usually tested in large animal models. The
heart anatomy among mammals is very similar, but the orientation of
the heart and of the great arteries differs between animals and human.
While the non-human primate is the animal model that most closely
resembles the human cardiovascular system, other mammalian species,
such as pigs and sheep, have been used for preclinical evaluation of
regenerative prostheses.

Ideally, the perfect animal model should have a cardiovascular
anatomical structure with similar size and geometry to the one of hu-
mans, as well as comparable hemodynamics, thrombogenicity, and
immune response. Even if none of the available models can fully re-
plicate human physiology, they exhibit anatomical and functional fea-
tures similar to humans, making them adequate candidates for the
evaluation of novel regenerative prostheses.

The ISO norms provide guidelines for the design and execution of
animal tests, with recommendations to facilitate the reduction of the
overall number of animals used, to reduce or eliminate pain or distress
in animals, and to find in-vitro replacements for animal tests (ISO
10993, Biological evaluation of medical devices; part 2: Animal welfare
requirements). Further information is provided by the ISO 5840
(Cardiovascular implants - Cardiac valve prostheses) that also re-
commends tests for preclinical in-vivo evaluation and clinical evalua-
tion of the final heart valve substitute. However, there is not yet a clear
standard for the development and testing of TEHVs.

5.1. Non-human primates

Non-human primates are the animal model that most closely re-
sembles anatomical and physiological human features. Similar to hu-
mans, they have a slow growth curve which makes them ideal candi-
dates for extended long-term studies. However, their use is prohibited
in countries where other animal models are available and, even if
possible, the use of non-human primates is strictly regulated and as-
sociated with prohibitive costs (Rashid et al., 2004; Gallo et al., 2017).
Due to these circumstances, few studies reporting the use of non-human
primates for the testing of TEHVs are available. Specifically, Weber
et al. implanted via minimally invasive procedure off-the-shelf avail-
able TEHVs in a baboon model for up to 8 weeks (Weber et al., 2013).
Valve functionality was retained throughout the follow-up, even if mild
to moderate insufficiency, caused by leaflet shortening, was detected.
When compared to human decellularized valves, these TEHVs showed a
rapid cellular repopulation, confirming the remodeling potential of
such acellular tissue engineered materials.

5.2. Pigs

Pigs are a popular choice for cardiovascular experiments as they
share a similar anatomy and physiology to that of humans (Gallo et al.,
2017). However, they have a fast growth curve, gaining up to 75kg in
8 weeks (Rashid et al., 2004) which makes them unsuitable for the
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assessment of regenerative prostheses because of potential size mis-
match. To overcome this limitation, researchers have optimized the in-
vivo testing of TEHVs in a smaller swine breed, the Vietnamese pig
(Gallo et al., 2017). In these studies, Gerosa and his team optimized
decellularized porcine aortic roots (Bottio et al., 2010) and implanted
them as replacement of the right ventricular outflow tract in Vietna-
mese pigs (Gallo et al., 2012; Gallo et al., 2016). After 15 months in-
vivo, extended functional performance, cell repopulation, de-novo ex-
tracellular matrix synthesis and no evidence of calcification suggest that
these valve replacements have the potential to remodel upon im-
plantation.

The porcine model presents some clear advantages for preclinical
cardiovascular research (i.e.: similarities to humans in immune system,
coagulation cascade, and endothelialization potential (Gallo et al.,
2017)). Despite the limited use of the swine model for the in-vivo
testing of TEHVs, research has shown that the pig can be considered as
a valid experimental choice for the preclinical evaluation of re-
generative prostheses.

5.3. Sheep

The sheep is the most widely accepted and used animal model to
test heart valve replacements because of mechanical properties of the
valves and hemodynamic flow parameters similar to that of humans
(Rashid et al., 2004). Additionally, the juvenile sheep (up to 12 months,
when bone growth and maturation mostly occur) represents the “the
worst-case scenario” (Taramasso et al., 2015) for testing the durability
and performance of valve prostheses because of the high levels of cal-
cium and phosphorous in the serum which may accelerate the calcifi-
cation of heart valve prostheses (Barnhart et al., 1982).

Hence, the ovine model has been extensively used for the evaluation
of TEHV functionality and remodeling, for pulmonary and aortic valve
replacements with both surgical and transcatheter implantation pro-
cedures (Table 1). Importantly, the sheep model has a moderate growth
curve that proved to be suitable to study the growth potential of both
tissue engineered vascular (Reimer et al., 2017; Kelm et al., 2012) and
valvular prostheses (Zafar et al., 2015; Hoerstrup et al., 2000; Reimer
et al., 2017; Quinn et al., 2016; Hennessy et al., 2017). The use of lambs
as animal model is, therefore, becoming the gold-standard for the de-
velopment and assessment of novel regenerative cardiovascular solu-
tions capable of growing within the recipient body.

6. In-vivo clinical evaluation

With the goal of improving the durability of currently available
xenogenic bioprostheses by avoiding fixation in glutaraldehyde, re-
searchers have developed TEHVs based on porcine valves deprived of
cells. Decellularization preserves the native valve geometry and the
gross integrity of the tissue structure, while eradicating the cellular
components responsible for adverse host responses and, hence, limiting
xenograft antigenicity without resorting to chemical fixation (O'Brien
et al., 1999; Erdbriigger et al., 2006). Despite the promising preclinical
results in a juvenile sheep model (O'Brien et al., 1999) (Table 1),
clinical transposition of such an approach into pediatric patients led to
a catastrophic outcome, with three sudden deaths and one prophylactic
explantation due to severe inflammatory responses to the implanted
xenogenic material (Simon et al., 2003) (Table 2). By translating the
decellularization approach to allografts, researchers have obtained
good clinical outcomes, with freedom from re-operation and adaptive
growth in the pulmonary position (Table 2). Extended follow-up studies
are still needed for a complete assessment of decellularized homografts
in aortic position, as the promising early data [42] could not be cor-
roborated after 10 years (Helder et al., 2016b). Clinical evaluation of
decellularized homografts in the aortic setting is currently ongoing
(ARISE program, clinical trial number NCT02527629).

While the use of fresh decellularized homograft is, so far, the ideal
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solution in terms of functionality, integration and immune response,
and may even allow to reduce reoperation rates in children and young
adults (Cebotari et al., 2011), the paucity of this material makes it an
unsuitable source for the increased demand of prostheses. On the other
hand, polymer-based bioresorbable TEHVs have raised great interest
because of their tuneable mechanical and geometrical properties, re-
duced cost and potential to regenerate upon implantation (Kluin et al.,
2017; Serruys et al., 2017). Vascular grafts based on this same tech-
nology have already been tested in pediatric patients with positive
outcome up to one year (Bockeria et al., 2017). Based on these suc-
cessful results, a first-in-man clinical trial to evaluate bioresorbable
polymeric valves (Xplore, clinical trial number NCT03022708) will
soon be initiated. TEHVs based on decellularized tissue engineered
matrix are not yet applied in clinical settings even though small calibre
vascular prostheses based on this technology are currently under clin-
ical investigation for hemodialysis access (clinical trial number
NCT01744418 and NCT01840956).

7. Future perspectives and conclusions

Recently, novel minimally-invasive techniques like TVR are being
extended to younger low-risk patients, as is evident from the ongoing
clinical trials (PARTNER3: NCT02675114, Evolut R low risk:
NCT02701283, NOTION 2: NCT02825134, LRT Study: NCT02628899),
suggesting the extension of the current clinical indication for TVR to
these patients in the near future. Despite this dramatic evolution in the
surgical field, with specific ISO norms that apply to this minimally in-
vasive technique (ISO norm 5840 on Cardiovascular implants - Cardiac
valve prostheses, Part 3: Heart valve substitutes implanted by trans-
catheter techniques), limited changes have been implemented to the
valve prostheses used for this approach. In particular, only glutar-
aldehyde-fixed xenogenic bioprostheses are currently suitable for TVR,
as the valve replacement needs to be sutured on a metal stent and
crimped into a delivery device before the implantation. Little is known
about the failure mode of TVR-compatible bioprostheses given that the
currently available clinical data for TVR, so far, cover a time span of
only 10 years. However, as these valves are analogous to the surgically
implanted bioprostheses, we can expect a similar failure mode, based
on degeneration and calcification. This will result in long-term mor-
bidity and the need for multiple re-interventions, in particular for
younger patients (Saleeb et al., 2014). Tissue engineered heart valve
replacements with regenerative potential are therefore proposed as a
potential solution to obtain life-long prostheses. However, despite en-
couraging preclinical results, few of these concepts have advanced into
clinics (Table 2) and are not yet compatible with TVR techniques. The
open challenges are multifaceted: technical and logistical complexity;
long-term safety and efficacy; controlled tissue remodeling to prevent
valvular dysfunction, and long-term preclinical evaluation in appro-
priate animal models. In addition, inconsistencies and a lack of inter-
nationally congruent regulations regarding TE constructs are a key
player in preventing the efficient translation of TE into clinical appli-
cation (Emmert et al., 2017). Due to the heterogeneous multitude of
TEHVs and the wide variation in biologically active ingredients and
delivery methods, categorization and classification of TE constructs is a
complex task and substantial efforts in this direction have been and are
being undertaken (Bertram et al., 2013; Bayon et al., 2015). Harmo-
nization of the nation-specific guidelines for classification of tissue
engineered medicinal products (TEMPs), as recently instated in the
European Medical Device Regulation and the introduction of GMP
(good manufacturing practice) and GLP (good laboratory practice)
practices are, for example, steps in the direction of facilitating the
clinical translation of TEMPs (Emmert et al., 2017). However, the ISO
norm 5840 was, for example, established in reference to mechanical
and bioprosthetic heart valves and its extensibility to regenerative
TEHVs is questionable. We are, thus, a long way from establishing in-
ternational guidelines as regulatory and technical aspects tend to be
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neglected while scientific and/or clinical challenges are being tackled.

In order to achieve standardization guidelines for regenerative heart
valve prostheses exact definitions of clinical requirements (e.g.: clinical
indications, inclusion and exclusion criteria, monitoring processes and
bailout strategies), technical prerequisites and infrastructure needs are
mandatory (Emmert & Hoerstrup, 2016).

Clinical translation of TEHVs has become a reality for homograft-
based prostheses (Table 2), and it is imminent for novel bioresorbable
polymer-based valve replacements (Xplore clinical trial). These studies
will provide important insights in the remodeling potential of TEHV in
humans and set the bases for the successful translation of other heart
valve TE approaches, especially those combined with minimally in-
vasive TVR techniques.
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